Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Cell Signal ; 110: 110812, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468053

RESUMO

Portal hypertension is a group of clinical syndromes induced by increased portal system pressure due to various etiologies including cirrhosis. When portal hypertension develops, the portal vein dilates and endothelial cells (ECs) in the portal vein are subjected to mechanical stretch. In this study, elastic silicone chambers were used to simulate the effects of mechanical stretch on ECs under portal hypertension. We found that mechanical stretch decreased PPARγ expression in ECs by blocking the PI3K/AKT/CREB signaling pathway or increasing NEDD4-mediated ubiquitination and degradation of PPARγ. Moreover, PPARγ downregulation triggered Endothelial-to-mesenchymal transition (EndoMT) in ECs under stretch by promoting Smad3 phosphorylation. The PPARγ agonist rosiglitazone mitigated stretch-induced EndoMT in vitro and alleviated EndoMT of the portal vein endothelium in cirrhotic rats.


Assuntos
Transdiferenciação Celular , Células Endoteliais , Hipertensão Portal , Animais , Ratos , Regulação para Baixo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Hipertensão Portal/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , PPAR gama/metabolismo , Estresse Mecânico , Transdiferenciação Celular/fisiologia
2.
Semin Liver Dis ; 43(3): 245-257, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442155

RESUMO

Liver sinusoidal endothelial cells (LSECs) are key players in maintaining hepatic homeostasis. They also play crucial roles during liver injury by communicating with liver cell types as well as immune cells and promoting portal hypertension, fibrosis, and inflammation. Cutting-edge technology, such as single cell and spatial transcriptomics, have revealed the existence of distinct LSEC subpopulations with a clear zonation in the liver. The signals released by LSECs are commonly called "angiocrine signaling." In this review, we summarize the role of angiocrine signaling in health and disease, including zonation in healthy liver, regeneration, fibrosis, portal hypertension, nonalcoholic fatty liver disease, alcohol-associated liver disease, aging, drug-induced liver injury, and ischemia/reperfusion, as well as potential therapeutic advances. In conclusion, sinusoidal endotheliopathy is recognized in liver disease and promising preclinical studies are paving the path toward LSEC-specific pharmacotherapies.


Assuntos
Hipertensão Portal , Hepatopatia Gordurosa não Alcoólica , Humanos , Células Endoteliais/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hipertensão Portal/metabolismo , Fibrose , Cirrose Hepática/metabolismo
3.
Biomed Pharmacother ; 165: 115116, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418980

RESUMO

The vasopressin system has emerged as a therapeutic focus for lowering portal hypertension and reducing splanchnic vasodilation in patients with refractory ascites. Clinically available vasopressin agonists are limited by preferential selectivity for V1 receptors that also have steep concentration-response curves with potential risks of excess vasoconstriction and/or complete antidiuretic effects. OCE-205 is a novel, selective, partial V1a receptor agonist with mixed agonist/antagonist activity and no V2 receptor activation at therapeutic doses. We carried out two studies assessing the in vivo effects of OCE-205 in different rat models of cirrhosis and ascites. In a carbon tetrachloride rat cirrhosis model, OCE-205 administration produced a marked reduction in portal hypertension and hyperaldosteronism, along with robust diuretic and natriuretic effects. These effects were accompanied by marked decreases in ascites volume, with three of five animals experiencing total mobilization of ascites. There was no evidence of fluid overload or sodium or water retention, confirming OCE-205's lack of V2 receptor activity. In a second, corroborative study using a bile duct ligation rat model of ascites, OCE-205 produced significant decreases in ascites volume and body weight and a significant increase in urine volume versus vehicle. Urine sodium excretion increased significantly after the first administration of OCE-205 relative to vehicle; however, repeat administration over 5 days did not lead to hyponatremia. Thus, in separate in vivo models, the mixed agonist/antagonist OCE-205 demonstrated relevant and expected endpoint findings consistent with its known mechanism of action and in vitro pharmacology without apparent unwanted effects or nonspecific toxicities.


Assuntos
Hiperaldosteronismo , Hipertensão Portal , Ratos , Animais , Diuréticos/uso terapêutico , Natriuréticos , Ascite/tratamento farmacológico , Ascite/metabolismo , Vasopressinas/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Sódio/metabolismo , Receptores de Vasopressinas , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/metabolismo , Hiperaldosteronismo/complicações
4.
J Pharmacol Sci ; 152(1): 50-60, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059491

RESUMO

Cirrhosis-related hepatic and renal endothelial dysfunction is characterized by macrophage-endothelium adhesion-mediated inflammation, glycocalyx/barrier damage, and impaired vasodilation. Activation of adenosine A2A receptor (A2AR) protects cirrhotic rats from impairment of hepatic microcirculation post hepatectomy. This study evaluates the effects of A2AR activation on the cirrhosis-related hepatic and renal endothelial dysfunction in biliary cirrhotic rats receiving two weeks of A2AR agonist PSB0777 [bile duct ligated (BDL)+PSB0777] treatment. Endothelial dysfunction in cirrhotic liver, renal vessels, and kidney is characterized by downregulation of the A2AR expressions, decreased vascular endothelial vasodilatory (p-eNOS)/anti-inflammatory (IL-10/IL-10R)/barrier [VE-cadherin (CDH5) and ß-catenin (CTNNB1)]/glycocalyx [syndecan-1 (SDC1) and hyaluronan synthase-2 (HAS2)] markers, and increased leukocyte-endothelium adhesion molecules (F4/80, CD68, ICAM-1, and VCAM-1). In BDL rats, PSB0777 treatment improves hepatic and renal endothelial dysfunction, ameliorates portal hypertension, and attenuates renal hypoperfusion by restoring of the vascular endothelial anti-inflammatory, barrier, glycocalyx markers and vasodilatory response as well as inhibiting the leukocyte-endothelium adhesion. In an in vitro study, conditioned medium (CM) of bone marrow-derived macrophage (BMDM) of BDL rats [BMDM-CM (BDL)] induced barrier/glycocalyx damage, which was reversed by the PSB0777 pre-treatment. The A2AR agonist is a potential agent that can simultaneously correct cirrhosis-related hepatic and renal endothelial dysfunction, portal hypertension, renal hypoperfusion, and renal dysfunction.


Assuntos
Hipertensão Portal , Nefropatias , Ratos , Animais , Receptor A2A de Adenosina , Glicocálix/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Hipertensão Portal/metabolismo , Fibrose , Sindecana-1
5.
BMC Genomics ; 24(1): 20, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641445

RESUMO

Portal hypertension (PHT) is a major cause of liver cirrhosis. The formation of portosystemic collateral vessels and splanchnic vasodilation contribute to the development of hyperdynamic circulation, which in turn aggravates PHT and increases the risk of complications. To investigate the changes in mesenteric arterioles in PHT, cirrhotic rat models were established by ligating the common bile ducts. After 4 weeks, the cirrhotic rats suffered from severe PHT and splanchnic hyperdynamic circulation, characterized by increased portal pressure (PP), cardiac output (CO), cardiac index (CI), and superior mesenteric artery (SMA) flow. Mesenteric arterioles in cirrhotic rats displayed remarkable vasodilation, vascular remodeling, and hypocontractility. RNA sequencing was performed based on these findings. A total of 1,637 differentially expressed genes (DEGs) were detected, with 889 up-regulated and 748 down-regulated genes. Signaling pathways related to vascular changes were enriched, including the vascular endothelial growth factor (VEGF), phosphatidylinositol-3-kinase-AKT (PI3K-AKT), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway, among others. Moreover, the top ten hub genes were screened according to the degree nodes in the protein-protein interaction (PPI) network. Functional enrichment analyses indicated that the hub genes were involved in cell cycle regulation, mitosis, and cellular response to oxidative stress and nitric oxide (NO). In addition, promising candidate drugs for ameliorating PHT, such as resveratrol, were predicted based on hub genes. Taken together, our study highlighted remarkable changes in the mesenteric arterioles of cirrhotic rats with PHT. Transcriptome analyses revealed the potential molecular mechanisms of vascular changes in splanchnic hyperdynamic circulation.


Assuntos
Hipertensão Portal , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Arteríolas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Hipertensão Portal/genética , Hipertensão Portal/metabolismo , Cirrose Hepática/genética , Perfilação da Expressão Gênica
6.
Hepatology ; 77(2): 501-511, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989577

RESUMO

BACKGROUND AND AIMS: Porto-sinusoidal vascular disorder (PSVD) is a group of liver vascular diseases featuring lesions encompassing the portal venules and sinusoids unaccompanied by cirrhosis, irrespective of the presence/absence of portal hypertension. It can occur secondary to coagulation disorders or insult by toxic agents. However, the cause of PSVD remains unknown in most cases. Hereditary cases of PSVD are exceptionally rare, but they are of particular interest and may unveil genetic alterations and molecular mechanisms associated with the disease. APPROACH AND RESULTS: We performed genome sequencing of four patients and two healthy individuals of a large multigenerational Lebanese family with PSVD and identified a heterozygous deleterious variant (c.547C>T, p.R183W) of FCH and double SH3 domains 1 ( FCHSD1 ), an uncharacterized gene, in patients. This variant segregated with the disease, and its pattern of inheritance was suggestive of autosomal dominant with variable expressivity. RNA structural modelling of human FCHSD1 suggests that the C-to-T substitution at position 547, corresponding to FCHSD1R183W , may increase both messenger RNA (mRNA) and protein stability and its interaction with MTOR-associated protein, LST8 homolog, a key protein of the mechanistic target of rapamycin (mTOR pathway). These predictions were substantiated by biochemical analyses, which showed that FCHSD1R183W induced high FCHSD1 mRNA stability, overexpression of FCHSD1 protein, and an increase in mTORC1 activation. This human FCHSD1 variant was introduced into mice through CRISPR/Cas9 genome editing. Nine out of the 15 mice carrying the human FCHSD1R183W variant mimicked the phenotype of human PSVD, including splenomegaly and enlarged portal vein. CONCLUSIONS: Aberrant FCHSD1 structure and function leads to mTOR pathway overactivation and may cause PSVD.


Assuntos
Hipertensão Portal , Doenças Vasculares , Humanos , Camundongos , Animais , Predisposição Genética para Doença , Família Estendida , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Hipertensão Portal/metabolismo , Genômica
7.
J Transl Med ; 20(1): 590, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514072

RESUMO

BACKGROUND AND AIMS: Kinin B1 receptors (B1Rs) are implicated in the pathogenesis of fibrosis. This study examined the anti-fibrotic effects of B1R blockade with BI 113823 in two established mouse models of hepatic fibrosis induced by intraperitoneal carbon tetrachloride (CCl4) injection or bile duct ligation (BDL). The mechanisms underlying the protection afforded by B1R inhibition were examined using human peripheral blood cells and LX2 human hepatic stellate cells (HSCs). METHODS: Fibrotic liver diseases were induced in mice by intraperitoneal carbon tetrachloride (CCl4) injection for 6 weeks, and by bile duct ligation (BDL) for 3 weeks, respectively. Mice received daily treatment of vehicle or BI 113823 (B1R antagonist) from onset of the experiment until the end of the study. RESULTS: B1Rs were strongly induced in fibrotic mouse liver. BI 113823 significantly attenuated liver fibrosis and portal hypertension (PH), and improved survival in both CCl4 and BDL mice. BI 113823 significantly reduced the expression of fibrotic proteins α-SMA, collagens 1, 3, 4, and profibrotic growth factors PDGF, TGFß, CTGF, VEGF, proliferating cell nuclear antigen; and reduced hepatic Akt phosphorylation in CCl4- and BDL-induced liver fibrosis. BI 113823 also reduced expression of Cytokines IL-1, IL-6; chemokines MCP-1, MCP-3 and infiltration of inflammatory cells; and inhibited human monocyte and neutrophil activation, transmigration, TNF-α & MPO production in vitro. BI 113823 inhibited TGF-ß and B1R agonist-stimulated human-HSC activation, contraction, proliferation, migration and fibrosis protein expression, and inhibited activation of PI3K/Akt signalling pathway. CONCLUSIONS: B1Rs merits consideration as a novel therapeutic target for chronic liver fibrosis and PH.


Assuntos
Hipertensão Portal , Cirrose Hepática , Receptores de Peptídeos , Animais , Humanos , Camundongos , Tetracloreto de Carbono , Fibrose , Células Estreladas do Fígado , Hipertensão Portal/complicações , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/metabolismo , Cininas/metabolismo , Cininas/farmacologia , Cininas/uso terapêutico , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores de Peptídeos/antagonistas & inibidores
8.
J Pharmacol Exp Ther ; 383(1): 25-31, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926870

RESUMO

In liver cirrhosis, hepatic inflammation and abundant portal-systemic collaterals are indicated for the development of hepatic encephalopathy. Sodium-glucose cotransporter-2 (SGLT-2) inhibitors are a type of anti-diabetic agent which exert pleiotropic and anti-inflammatory effects. Diabetes and chronic liver disease often coexist, but the influence of SGLT-2 inhibition on liver cirrhosis and hepatic encephalopathy remains unknown. This study investigated the effect of SGLT-2 inhibition on cirrhotic rats. Biliary cirrhosis was induced in Sprague-Dawley rats via common bile duct ligation. A total of two weeks of treatment with the SGLT-2 inhibitor, empagliflozin 30 mg/kg/d, was applied. The motor activities, hemodynamics, biochemistry parameters, plasma levels of vascular endothelial growth factor (VEGF), and the severity of portal-systemic collateral shunts were measured. The hepatic histopathology and protein expressions were examined. We found that empagliflozin treatment did not affect hemodynamics, liver biochemistry, or blood glucose levels in cirrhotic rats. Empagliflozin did not affect hepatic inflammation and fibrosis. The protein expression of factors related to liver injury were not influenced by empagliflozin. However, empagliflozin decreased motor activities in cirrhotic rats and increased portal-systemic collateral shunts and VEGF plasma levels. In summary, SGLT-2 inhibition by empagliflozin did not ameliorate portal hypertension and hepatic inflammation in cirrhotic rats. In contrast, it exacerbated hepatic encephalopathy, which was evidenced by a decrease in motor activity. A possible mechanism could be an increase of portal-systemic shunts related to VEGF upregulation. Therefore, empagliflozin use should be cautious in cirrhotic patients regarding the development of hepatic encephalopathy. SIGNIFICANCE STATEMENT: Sodium-glucose cotransporter-2 inhibition by empagliflozin did not ameliorate portal hypertension and hepatic inflammation in cirrhotic rats. In contrast, it exacerbated hepatic encephalopathy through increased portal-systemic shunts related to VEGF up-regulation.


Assuntos
Encefalopatia Hepática , Hipertensão Portal , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Ratos , Encefalopatia Hepática/tratamento farmacológico , Encefalopatia Hepática/complicações , Hipertensão Portal/complicações , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
9.
Sci Rep ; 12(1): 11884, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831335

RESUMO

Liver cirrhosis is a late-stage liver disease characterized by excessive fibrous deposition triggering portal-hypertension (PH); the prime restrainer for cirrhosis-related complications. Remedies that can dually oppose hepatic fibrosis and lower PH, may prevent progression into decompensated-cirrhosis. Different Astragalus-species members have shown antifibrotic and diuretic actions with possible subsequent PH reduction. However, A.spinosus and A.trigonus were poorly tested for eliciting these actions. Herein, A.spinosus and A.trigonus roots and aerial parts extracts were subjected to comprehensive metabolic-fingerprinting using UHPLC-MS/MS resulting in 56 identified phytoconstituents, followed by chemometric untargeted analysis that revealed variable metabolic profiles exemplified by different species and organ types. Consequently, tested extracts were in-vivo evaluated for potential antifibrotic/anticirrhotic activity by assessing specific markers. The mechanistic prospective to induce diuresis was investigated by analyzing plasma aldosterone and renal-transporters gene-expression. Serum apelin and dimethylarginine-dimethylaminohydrolase-1 were measured to indicate the overall effect on PH. All extracts amended cirrhosis and PH to varying extents and induced diuresis via different mechanisms. Further, An OPLS model was built to generate a comprehensive metabolic-profiling of A.spinosus and A.trigonus secondary-metabolites providing a chemical-based evidence for their efficacious consistency. In conclusion, A.spinosus and A.trigonus organs comprised myriad pharmacologically-active constituents that act synergistically to ameliorate cirrhosis and associated PH.


Assuntos
Astrágalo , Hipertensão Portal , Cirrose Hepática , Extratos Vegetais , Aldosterona/sangue , Amidoidrolases/sangue , Apelina/sangue , Astrágalo/química , Astrágalo/metabolismo , Cromatografia Líquida de Alta Pressão , Diurese , Concentração de Íons de Hidrogênio , Hipertensão Portal/sangue , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/etiologia , Hipertensão Portal/metabolismo , Fígado/metabolismo , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Metaboloma/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Estudos Prospectivos , Espectrometria de Massas em Tandem
10.
Hepatol Commun ; 6(9): 2551-2564, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726345

RESUMO

The effects of acute portal hypertension (PHT), which is reported as poor prognostic factors in patients with hepatocellular carcinoma, are not well known on the liver immune system, including natural killer (NK) cells. The aim of this study, therefore, was to investigate how acute PHT influences the functions and characteristics of liver-resident NK (lr-NK) cells using an acute PHT mouse model. Acute PHT decreased the number of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL+ ) lr-NK cells by about 20% and attenuated cytotoxic activity against the Hepa1-6 cell line by about 40%. Among various cytokine, only interleukin-33 (IL-33), which inhibits NK activity, significantly increased after portal vein ligation (PVL). Because lr-NK cells highly expressed ST2/IL-33R, IL-33 co-culture significantly suppressed TRAIL expression on lr-NK cells by about 50%, and IL-33 administration markedly decreased TRAIL expression and cytotoxic activity of lr-NK cells. Furthermore, the TRAIL+ NK cells population was maintained by anti-IL33 antibody or following portosystemic shunt procedure even after PVL. Finally, we demonstrated that IL-33 decreased TRAIL expression in lr-NK cells via AKT-forkhead box O (FoxO) and mitogen-activated protein kinase (MAPK) signaling. Conclusion: This work demonstrates that PHT suppresses the TRAIL+ lr-NK cell population and antitumor activities in the liver. Additionally, Akt-FoxO and MAPK signaling pathways attenuate the TRAIL expression in lt-NK cells via IL-33 receptor in mice.


Assuntos
Hipertensão Portal , Neoplasias Hepáticas , Ligante Indutor de Apoptose Relacionado a TNF , Animais , Antineoplásicos/metabolismo , Hipertensão Portal/metabolismo , Interleucina-33/metabolismo , Células Matadoras Naturais , Neoplasias Hepáticas/cirurgia , Camundongos , Veia Porta , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
11.
J Hepatol ; 77(3): 723-734, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35421427

RESUMO

BACKGROUND & AIMS: Liver sinusoidal endothelial cells (LSECs) are ideally situated to sense stiffness and generate angiocrine programs that potentially regulate liver fibrosis and portal hypertension. We explored how specific focal adhesion (FA) proteins parlay LSEC mechanotransduction into stiffness-induced angiocrine signaling in vitro and in vivo. METHODS: Primary human and murine LSECs were placed on gels with incremental stiffness (0.2 kPa vs. 32 kPa). Cell response was studied by FA isolation, actin polymerization assay, RNA-sequencing and electron microscopy. Glycolysis was assessed using radioactive tracers. Epigenetic regulation of stiffness-induced genes was analyzed by chromatin-immunoprecipitation (ChIP) analysis of histone activation marks, ChIP sequencing and circularized chromosome conformation capture (4C). Mice with LSEC-selective deletion of glycolytic enzymes (Hk2fl/fl/Cdh5cre-ERT2) or treatment with the glycolysis inhibitor 3PO were studied in portal hypertension (partial ligation of the inferior vena cava, pIVCL) and early liver fibrosis (CCl4) models. RESULTS: Glycolytic enzymes, particularly phosphofructokinase 1 isoform P (PFKP), are enriched in isolated FAs from LSECs on gels with incremental stiffness. Stiffness resulted in PFKP recruitment to FAs, which paralleled an increase in glycolysis. Glycolysis was associated with expansion of actin dynamics and was attenuated by inhibition of integrin ß1. Inhibition of glycolysis attenuated a stiffness-induced CXCL1-dominant angiocrine program. Mechanistically, glycolysis promoted CXCL1 expression through nuclear pore changes and increases in NF-kB translocation. Biochemically, this CXCL1 expression was mediated through spatial re-organization of nuclear chromatin resulting in formation of super-enhancers, histone acetylation and NF-kB interaction with the CXCL1 promoter. Hk2fl/fl/Cdh5cre-ERT2 mice showed attenuated neutrophil infiltration and portal hypertension after pIVCL. 3PO treatment attenuated liver fibrosis in a CCl4 model. CONCLUSION: Glycolytic enzymes are involved in stiffness-induced angiocrine signaling in LSECs and represent druggable targets in early liver disease. LAY SUMMARY: Treatment options for liver fibrosis and portal hypertension still represent an unmet need. Herein, we uncovered a novel role for glycolytic enzymes in promoting stiffness-induced angiocrine signaling, which resulted in inflammation, fibrosis and portal hypertension. This work has revealed new targets that could be used in the prevention and treatment of liver fibrosis and portal hypertension.


Assuntos
Células Endoteliais , Hipertensão Portal , Actinas/metabolismo , Animais , Quimiocina CXCL1/metabolismo , Cromatina/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Glicólise , Histonas/metabolismo , Humanos , Hipertensão Portal/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Mecanotransdução Celular , Camundongos , NF-kappa B/metabolismo
12.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638713

RESUMO

The NO-cGMP signal transduction pathway plays a crucial role in tone regulation in hepatic sinusoids and peripheral blood vessels. In a cirrhotic liver, the key enzymes endothelial NO synthase (eNOS), soluble guanylate cyclase (sGC), and phosphodiesterase-5 (PDE-5) are overexpressed, leading to decreased cyclic guanosine-monophosphate (cGMP). This results in constriction of hepatic sinusoids, contributing about 30% of portal pressure. In contrast, in peripheral arteries, dilation prevails with excess cGMP due to low PDE-5. Both effects eventually lead to circulatory dysfunction in progressed liver cirrhosis. The conventional view of portal hypertension (PH) pathophysiology has been described using the "NO-paradox", referring to reduced NO availability inside the liver and elevated NO production in the peripheral systemic circulation. However, recent data suggest that an altered availability of cGMP could better elucidate the contrasting findings of intrahepatic vasoconstriction and peripheral systemic vasodilation than mere focus on NO availability. Preclinical and clinical data have demonstrated that targeting the NO-cGMP pathway in liver cirrhosis using PDE-5 inhibitors or sGC stimulators/activators decreases intrahepatic resistance through dilation of sinusoids, lowering portal pressure, and increasing portal venous blood flow. These results suggest further clinical applications in liver cirrhosis. Targeting the NO-cGMP system plays a role in possible reversal of liver fibrosis or cirrhosis. PDE-5 inhibitors may have therapeutic potential for hepatic encephalopathy. Serum/plasma levels of cGMP can be used as a non-invasive marker of clinically significant portal hypertension. This manuscript reviews new data about the role of the NO-cGMP signal transduction system in pathophysiology of cirrhotic portal hypertension and provides perspective for further studies.


Assuntos
GMP Cíclico/metabolismo , Hipertensão Portal/metabolismo , Hipertensão Portal/terapia , Cirrose Hepática/metabolismo , Cirrose Hepática/terapia , Sistemas do Segundo Mensageiro , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Humanos , Hipertensão Portal/patologia , Cirrose Hepática/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
13.
J Cell Mol Med ; 25(22): 10389-10402, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34609050

RESUMO

The balance between endothelial nitric oxide (NO) synthase (eNOS) activation and production of reactive oxygen species (ROS) is very important for NO homeostasis in liver sinusoidal endothelial cells (LSECs). Overexpression of cyclooxygenase-2 (COX-2), a major intravascular source of ROS production, has been observed in LSECs of cirrhotic liver. However, the links between low NO bioavailability and COX-2 overexpression in LSECs are unknown. This study has confirmed the link between low NO bioavailability and COX-2 overexpression by COX-2-dependent PGE2-EP2-ERK1/2-NOX1/NOX4 signalling pathway in LSECs in vivo and in vitro. In addition, the regulation of COX-2-independent LKB1-AMPK-NRF2-HO-1 signalling pathway on NO homeostasis in LSECs was also elucidated. The combinative effects of celecoxib on diminishment of ROS via COX-2-dependent and COX-2-independent signalling pathways greatly decreased NO scavenging. As a result, LSECs capillarisation was reduced, and endothelial dysfunction was corrected. Furthermore, portal hypertension of cirrhotic liver was ameliorated with substantial decreasing hepatic vascular resistance and great increase of portal blood flow. With the advance understanding of the mechanisms of LSECs protection, celecoxib may serve as a potential therapeutic candidate for patients with cirrhotic portal hypertension.


Assuntos
Celecoxib/uso terapêutico , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Celecoxib/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Gerenciamento Clínico , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Hemodinâmica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Hipertensão Portal/diagnóstico , Hipertensão Portal/etiologia , Masculino , Modelos Biológicos , Óxido Nítrico/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Sci Rep ; 11(1): 21246, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711891

RESUMO

To study the impact of total splenectomy (TS) on peripheral lymphocytes and their subsets in patients with hypersplenism associated with cirrhotic portal hypertension (CPH). We studied 102 consecutive patients who received TS from January 2008 to January 2020 due to CPH-related hypersplenism. A similar number of healthy individuals are used as healthy controls (HC). The total lymphocyte counts and their percentages of B lymphocytes, total T lymphocytes (cluster of differentiation (CD)3+) and their subsets (CD4+, CD8+), and natural killer (NK) cells in preoperative peripheral blood samples in hypersplenism patients were significantly lower than that of the HCs (both P < 0.05). The total lymphocyte counts and percentages of B lymphocytes in peripheral blood were significantly increased 1 week and 1 month after TS when compared with the pre-TS values (P < 0.05). There was no significant difference in the percentages of NK cells before or after surgery (P > 0.05). However, the percentages of CD3+ cells was significantly higher 1 month after than before surgery (P < 0.001). The percentages of CD4+, and CD8+ T lymphocytes were significantly lower 1 week after surgery (P < 0.05), but they were significantly higher 1 month after surgery (P < 0.01). The CD4+:CD8+ ratio was not significantly different from those before surgery, and 1 week or 1 month after surgery (P > 0.05). Patients with hypersplenism associated with CPH were significantly immunosuppressed preoperatively. After TS, the total lymphocyte count and percentages of B lymphocytes, and total T lymphocytes and their subsets increased significantly, resulting in improved immune functions.


Assuntos
Hiperesplenismo/etiologia , Hipertensão Portal/etiologia , Cirrose Hepática/complicações , Contagem de Linfócitos , Subpopulações de Linfócitos/imunologia , Adulto , Biomarcadores , Suscetibilidade a Doenças , Feminino , Humanos , Hiperesplenismo/metabolismo , Hiperesplenismo/patologia , Hipertensão Portal/metabolismo , Hipertensão Portal/patologia , Subpopulações de Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade
15.
Biomed Pharmacother ; 144: 112258, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34614465

RESUMO

Portal hypertensive gastropathy (PHG) is a complication of cirrhotic or noncirrhotic portal hypertension. PHG is very important in the clinic because it can cause acute or even massive blood loss, and its treatment efficacy and prognosis are poor. Currently, the incidence of PHG in patients with cirrhosis is 20-80%, but its pathogenesis is complicated and poorly understood. Studies have shown that portal hypertension can cause changes in gastric mucosal microcirculation hemodynamics, leading to changes in gastric mucosal histology and function and thereby weakening the mucosal defense barrier. However, no specific drug treatment plans are currently available. This article reviews the current literature to further our understanding of the mechanism underlying PHG and the relationship between PHG and the posterior mucosal defense barrier and to explore new therapeutic targets.


Assuntos
Células Endoteliais/metabolismo , Mucosa Gástrica/irrigação sanguínea , Hemodinâmica , Hipertensão Portal/metabolismo , Microcirculação , Circulação Esplâncnica , Gastropatias/metabolismo , Animais , Antioxidantes/uso terapêutico , Apoptose , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Fármacos Gastrointestinais/uso terapêutico , Humanos , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/patologia , Hipertensão Portal/fisiopatologia , Estresse Oxidativo , Gastropatias/tratamento farmacológico , Gastropatias/patologia , Gastropatias/fisiopatologia
16.
J Cell Mol Med ; 25(21): 10073-10087, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34647412

RESUMO

Liver cirrhosis and portal hypertension are accompanied by hyperdynamic circulation, angiogenesis and portosystemic collaterals. Matrix metalloproteinases (MMPs) participate in fibrogenesis and angiogenesis, however, whether they can be targeted in cirrhosis treatment is unclear. Therefore, we performed three series of experiments to investigate this issue. Liver cirrhosis was induced by common bile duct ligation (BDL) in Sprague-Dawley rats. Sham-operated rats served as controls. Rats were randomly allocated to receive vehicle, minocycline (a nonselective MMP inhibitor) or SB-3CT (MMP-2 and -9 inhibitor) for 28 days in the first and second series, respectively. MMP-9 knockout mice were used in the third series. The results showed that minocycline ameliorated portal hypertension, hemodynamic abnormalities, reduced collateral shunting, mesenteric vascular density, plasma VEGF level and alleviated liver fibrosis. SB-3CT attenuated portal hypertension, hemodynamic derangements, reduced shunting, mesenteric vascular density, mesenteric VEGF protein expression, and liver fibrosis. Knockout BDL mice had significantly alleviated portal hypertension, liver fibrosis, liver α-SMA and mesenteric eNOS protein expressions compared to wild-type BDL mice. Liver SMAD2 phosphorylation was down-regulated in all series with MMP inhibition or knock-out. In conclusion, MMP-9 inhibition or deletion ameliorated the severity of cirrhosis, portal hypertension, and associated derangements. MMP-9 may be targeted in the treatment of liver cirrhosis.


Assuntos
Deleção de Genes , Hipertensão Portal/etiologia , Hipertensão Portal/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Predisposição Genética para Doença , Hemodinâmica , Hipertensão Portal/diagnóstico , Imuno-Histoquímica , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Minociclina/farmacologia , Neovascularização Patológica , Ratos , Roedores , Circulação Esplâncnica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G603-G616, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585619

RESUMO

In patients, advanced cirrhosis only regresses partially once the etiological agent is withdrawn. Animal models for advanced cirrhosis regression are missing. Lifestyle interventions (LIs) have been shown to improve steatosis, inflammation, fibrosis, and portal pressure (PP) in liver disease. We aimed at characterizing cirrhosis regression after etiological agent removal in experimental models of advanced cirrhosis and to study the impact of different LI on it. Advanced cirrhosis was induced in rats either by carbon tetrachloride (CCl4) or by thioacetamide (TAA) administration. Systemic and hepatic hemodynamics, liver fibrosis, hepatic stellate cell (HSC) activation, hepatic macrophage infiltration, and metabolic profile were evaluated after 48 h, 4 wk or 8 wk of etiological agent removal. The impact of LI consisting in caloric restriction (CR) or moderate endurance exercise (MEE) during the 8-wk regression process was analyzed. The effect of MEE was also evaluated in early cirrhotic and in healthy rats. A significant reduction in portal pressure (PP), liver fibrosis, and HSC activation was observed during regression. However, these parameters remained above those in healthy animals. During regression, animals markedly worsened their metabolic profile. CR although preventing those metabolic disturbances did not further reduce PP, hepatic fibrosis, or HSC activation. MEE also prevented metabolic disturbances, without enhancing, but even attenuating the reduction of PP, hepatic fibrosis, and HSC activation achieved by regression. MEE also worsened hepatic fibrosis in early-TAA cirrhosis and in healthy rats.NEW & NOTEWORTHY We have developed two advanced cirrhosis regression experimental models with persistent relevant fibrosis and portal hypertension and an associated deteriorated metabolism that mimic what happens in patients. LI, despite improving metabolism, did not enhance the regression process in our cirrhotic models. CR did not further reduce PP, hepatic fibrosis, or HSC activation. MEE exhibited a profibrogenic effect in the liver blunting cirrhosis regression. One of the potential explanations of this worsening could be ammonia accumulation.


Assuntos
Restrição Calórica , Doença Hepática Induzida por Substâncias e Drogas/terapia , Ingestão de Energia , Terapia por Exercício , Estilo de Vida Saudável , Cirrose Hepática Experimental/terapia , Fígado/metabolismo , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hipertensão Portal/induzido quimicamente , Hipertensão Portal/metabolismo , Hipertensão Portal/fisiopatologia , Hipertensão Portal/terapia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Resistência Física , Ratos Wistar , Comportamento de Redução do Risco , Tioacetamida , Fatores de Tempo
18.
Biochimie ; 187: 144-151, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34102254

RESUMO

Relaxin (RLX) is a heterodimeric, polypeptide hormone that has natural anti-fibrotic activity in many organs. During the chronic liver injury, hepatic stellate cells (HSCs) are phenotypically transformed into myofibroblasts. This process is known as activation of HSCs. Activated HSCs play a central role in hepatic fibrosis. Quiescent HSCs were shown to express low levels of RLX receptors such as RXFP1 and RXFP2. Upon chronic liver injury, HSCs are activated and express high levels of the RLX receptors. ML290, an agonist of RXFP1 has been reported to have antifibrotic effect in vitro as well as in vivo. Serelaxin, a recombinant human RLX-2 treatment has reduced hepatic fibrosis and portal hypertension in experimental models due to its vasodilation properties by inducing intrahepatic nitric oxide level. Serelaxin has also produced a neutral effect when studied against human cirrhosis-related portal hypertension in clinical trials. RLX is a potent collagen synthesis inhibitor and it has extracellular matrix (ECM) remodeling properties by promoting matrix metalloproteinases and downregulating expression of metalloproteinases inhibitors. Available reports suggest that RLX could induce ECM remodeling and suppress the profibrogenic transforming growth factor-ß signaling and thereby regress hepatic fibrosis. Though RLX has natural antifibrotic activity, its antifibrotic molecular mechanisms especially in hepatic fibrosis condition are not reported. This review exclusively focuses antifibrotic effect of RLX on hepatic fibrosis.


Assuntos
Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Relaxina/metabolismo , Transdução de Sinais , Animais , Colágeno/biossíntese , Matriz Extracelular/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Hipertensão Portal/metabolismo , Hipertensão Portal/patologia , Hipertensão Portal/terapia , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956074

RESUMO

Portal hypertension is a major contributor to decompensation and death from liver disease, a global health problem. Here, we demonstrate homozygous damaging mutations in GIMAP5, a small organellar GTPase, in four families with unexplained portal hypertension. We show that GIMAP5 is expressed in hepatic endothelial cells and that its loss in both humans and mice results in capillarization of liver sinusoidal endothelial cells (LSECs); this effect is also seen when GIMAP5 is selectively deleted in endothelial cells. Single-cell RNA-sequencing analysis in a GIMAP5-deficient mouse model reveals replacement of LSECs with capillarized endothelial cells, a reduction of macrovascular hepatic endothelial cells, and places GIMAP5 upstream of GATA4, a transcription factor required for LSEC specification. Thus, GIMAP5 is a critical regulator of liver endothelial cell homeostasis and, when absent, produces portal hypertension. These findings provide new insight into the pathogenesis of portal hypertension, a major contributor to morbidity and mortality from liver disease.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Homeostase/fisiologia , Hipertensão Portal/metabolismo , Fígado/metabolismo , Adolescente , Adulto , Animais , Feminino , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/metabolismo , Masculino , Camundongos , Adulto Jovem
20.
Hepatology ; 74(3): 1533-1545, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33786862

RESUMO

BACKGROUND AND AIMS: Patients with cirrhosis on the liver transplant (LT) waiting list may die or be removed because of complications of portal hypertension (PH) or infections. von Willebrand factor antigen (vWF-Ag) and C-reactive protein (CRP) are simple, broadly available markers of these processes. APPROACH AND RESULTS: We determined whether addition of vWF-Ag and CRP to the Model for End-Stage Liver Disease-Sodium (MELD-Na) score improves risk stratification of patients awaiting LT. CRP and vWF-Ag at LT listing were assessed in two independent cohorts (Medical University of Vienna [exploration cohort] and Mayo Clinic Rochester [validation cohort]). Clinical characteristics, MELD-Na, and mortality on the waiting list were recorded. Prediction of 3-month waiting list mortality was assessed by receiver operating characteristics curve (ROC-AUC). In order to explore potential mechanisms underlying the prognostic utility of vWF-Ag and CRP in this setting, we evaluated their association with PH, bacterial translocation, systemic inflammation, and circulatory dysfunction. In the exploration cohort (n = 269) vWF-Ag and CRP both improved the predictive value of MELD-Na for 3-month waitlist mortality and showed the highest predictive value when combined (AUC: MELD-Na, 0.764; MELD-Na + CRP, 0.790; MELD-Na + vWF, 0.803; MELD-Na + CRP + vWF-Ag, 0.824). Results were confirmed in an independent validation cohort (n = 129; AUC: MELD-Na, 0.677; MELD-Na + CRP + vWF-Ag, 0.882). vWF-Ag was independently associated with PH and inflammatory biomarkers, whereas CRP closely, and MELD independently, correlated with biomarkers of bacterial translocation/inflammation. CONCLUSIONS: The addition of vWF-Ag and CRP-reflecting central pathophysiological mechanisms of PH, bacterial translocation, and inflammation, that are all drivers of mortality on the waiting list for LT-to the MELD-Na score improves prediction of waitlist mortality. Using the vWFAg-CRP-MELD-Na model for prioritizing organ allocation may improve prediction of waitlist mortality and decrease waitlist mortality.


Assuntos
Proteína C-Reativa/metabolismo , Doença Hepática Terminal/metabolismo , Cirrose Hepática/metabolismo , Listas de Espera/mortalidade , Fator de von Willebrand/metabolismo , Idoso , Translocação Bacteriana , Biomarcadores , Feminino , Humanos , Hipertensão Portal/metabolismo , Inflamação/metabolismo , Cirrose Hepática/cirurgia , Transplante de Fígado , Masculino , Pessoa de Meia-Idade , Prognóstico , Índice de Gravidade de Doença , Sódio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...